

Mahatma Fule Arts, Commerce, and Sitaramji Chaudhari Science Mahavidyalaya, Warud

Department of Mathematics

Topic: Linear Transformation

Dr. R. S. Wadbude

Associate Professor

Let U and V be two vector spaces over the same field F.

A function $T: U \rightarrow V$ is said to be linear transformation from U to V if

i) T(u+v) = T(u) + T(v) $\forall u, v \in U$ ii) $T(\alpha u) = \alpha T(u)$ $\forall u \in U, \alpha \in F$

In other words a function $T: U \to V$ is said to be linear transformation from U to V which associates to each element $u \in U$ to a unique element $T(u) \in V$ such that $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$ $\forall u, v \in U$ and $\alpha, \beta \in F$

Properties of linear Transformation

If $T: U \rightarrow V$ is a linear transformation from U to V, then i) . T(0) = 0', where $0 \in U$ and $0' \in V$ We have $T(\alpha u) = \alpha T(u)$ $\forall u \in U, \alpha \in F$ Put $\alpha = 0 \in F$, then T(0u) = 0T(u) = 0' ∴ T(0) = 0' ii) Again we have $T(\alpha u) = \alpha T(u)$ $\forall u \in U, \alpha \in F$ put $\alpha = -1 \in F$, then T(-1.u) = -1. = - T(u) \therefore T(-1.u) = - T(u) iii) $T(\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 + ... + \alpha_n u_n) = T(\alpha_1 u_1) + T(\alpha_2 u_2 + \alpha_3 u_3 + ... + \alpha_n u_n)$ = $\alpha_1 T(u_1) + T(\alpha_2 u_2) + T(\alpha_3 u_3 + ... + \alpha_n u_n)$ = $\alpha_1 T(u_1) + \alpha_2 T(u_2) + T(\alpha_3 u_3 + ... + \alpha_n u_n)$ = $T(\alpha_1 u_1) + T(\alpha_2 u_2) + T(\alpha_3 u_3) + ... + T(\alpha_n u_n)$ iv) T(u - v) = T(u) - T(v) \forall u, v \in U. Now $T(u - v) = T\{u + (-v)\}$ = T(u) + T(-v) = T(u) - T(v)(T(-v) = -T(v)) \therefore T(u - v) = T(u) - T(v)

Example : The function T: $\mathbb{R}^2 \to \mathbb{R}^2$, defined by (x, y) = (x + 1, y + 3) is not a Linear Transformation. Solution: Consider (x, y) = (1, 1) and show that $T(\alpha(1, 1) = \alpha T(1, 1)$. Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be defined by $(x, y) = (x + 1, y + 3) \quad \forall (x, y) \in \mathbb{R}^2$

 \Rightarrow T(1, 1) = (2, 4)

Now T(3(1, 1) = T(3, 3) and 3T(1, 1) = 3(2, 4) = (6, 12)

Thus $T(3(1, 1) \neq 3T(1, 1))$, hence T is not linear transformation.

Example: (NET) which of the following is L.T. from R³ to R².....

Kernel of L.T.:Let $T: U \rightarrow V$ be a linear transformation from U to V.Null space or kernel of T and is defined asKer = { $u \in U \mid T(u) = 0 = \text{zero vector of V} }$ [if $T(0) = 0 \Rightarrow 0 \in \text{Ker}T \subset U$]

Range of L.T. :Let $T: U \rightarrow V$ be a linear transformation from U to V.Range of T is denoted by R(T) and defined asR(T) = { T(u) $| u \in U }$ [R(T) = T(U)]

Nullity of T: The dimension of null space is called nullity of T. Denoted by n(T) or dimN(T).

Rank of T : The dimension of R(T) is called rank of T. Denoted by r(T) or Dim(R(T).

Theorem. Let $T: U \rightarrow V$ be a linear transformation from U to V. Then

(a) R(T) is a subspace of .

(b) N(T) is a subspace of .

(c) T is $1-1 \Leftrightarrow N(T)$ is a zero subspace of U

(d) $T[u_1 + u_2 + u_3 + ... + u_n] = R(T) = [Tu_1 + Tu_2 + Tu_3 + ... + Tu_n]$

(e) U is a finite dimensional vector space \Rightarrow dimR(T) \leq dimU.

Theorem. Let $T: U \rightarrow V$ be a linear transformation from U to V. Then

- a) If T is 1-1 and u₁, u₂, u₃,..., u_n are LI vectors in U, then Tu₁, Tu₂, Tu₃,..., Tu_n are LI vectora in V.
- b) If $v_1, v_2, v_3, ..., v_n$ are LI in R(T) and $u_1, u_2, u_3, ..., u_n$ are vectors in U such that $Tu_i = v_i$ for i = 1,2,3...n. Then $\{u_1, u_2, u_3, ..., u_n\}$ is LI.

Theorem. Let $T: U \rightarrow V$ be a linear map and U be finitely dimensional vector space. Then dimR(T) + dimN(T) = dim (U)

i.e, Rank + Nullity = dim. of domain.

Theorem. If U and V are same finitely dimensional vector spaces over the same field, then a linear map T: U \rightarrow V is 1-1 \Leftrightarrow T is onto.

Corollary: Let $T: U \rightarrow V$ be a linear map and dimU = dimV = a finite positive integer. Then following statements are equivalent:

a) T is onto	b) R(T) = V	c) dimR(T) = dimV
d) dim N(T0 =0	e) N(T0 =0	f) T is 1-1.

Algebra of Linear Transformations

A: Let U and V be two vector spaces over the field F.

Let T_1 and T_2 be two linear transformations from U to V.

i) Then the function $(T_1 + T_2)$ defined by

 $(\mathsf{T}_1 + \mathsf{T}_2)(\mathsf{u}) = \mathsf{T}_1(\mathsf{u}) + \mathsf{T}_2(\mathsf{u}) \qquad \forall \ \mathsf{u} \in \mathsf{U}$

is a linear transformations from U to V.

ii) If $\alpha \in F$ is any element, then the function (αT) defined by

 $(\alpha T)u = \alpha T(u) \qquad \forall u \in U$

is a linear transformations from U to V.

[The set of all linear transformations L(U, V) from U to V, together with vector addition and scalar multiplication defined above, is a vector space over the field F.]

B: Let U be an m-dimensional and V be an n- dimensional vector spaces over the same field F.

Then the vector space L(U, V) if finite- dimensional and has dimension mn.

C: Let U, V and W be vector spaces over the field F. Let $T_1 : U \to V$ and $T_2 : V \to W$, then the composition function $T_2.T_1$ is defined by $T_2.T_1(u) = T_2[T_1(u)] \quad \forall u \in U$ is a linear transformations from U to W. **Linear operator** : If V is a vector space over the field F, the a linear transformation from V into V is called a linear operator.

Example: Let T_1 and T_2 be two linear transformations from $R^2(R)$ into $R^2(R)$ defined by $T_1(x, y) = (x + y, 0)$ and $T_2(x, y) = (0, x - y)$, then $T_2T_1 \neq T_1T_2$. **Solution:** $T_1T_2(x, y) = T_1(T_2(x, y)) = T_1(0, x - y) = (x - y, 0)$ $T_2T_1(x, y) = T_2(T_1(x, y)) = T_2(x + y, 0) = (0, x + y)$, \therefore $T_2T_1 \neq T_1T_2$. If T is a linear operator on V, then we can compose T with T as follows $T^2 = TT$ $T^3 = TTT$ $T^n = TTT....T(n times)$

Remark: If $T \neq 0$, then we define $T^0 = I$ (identity operator)

Theorem: Let V be a vector space over field F, le T, T₁, T₂, and T₃ be linear operators on V and let α be an element in F, then i) IT = TI = T. I being an identity operator. ii) T₁(T₂ + T₃) = T₁T₂ + T₁T₃, and (T₂ + T₃) T₁ = T₂T₁ + T₃T₁. iii) T₁(T₂ T₃) = (T₁T₂)T₃. iv) α (T₁T₂) = (α T₁)T₂ = T₁(α T₂). v) T**0** = **0**T = **0**, **0** being a zero linear operator.

Invertible linear transformation:

A linear transformation T : U \rightarrow V is called invertible or regular if there exists a unique linear transformation T⁻¹ : V \rightarrow U such that T⁻¹ T = I is identity transformation on U and TT⁻¹ is the identity transformation on V.

T is invertible \Leftrightarrow i) T is 1-1 ii) T is onto i.e dimR(T) = V

Theorem: Let U and V be vector spaces over the same field F. and let $T : U \rightarrow V$ be a linear transformation, If T is invertible, then T⁻¹ is a linear transformation from V into U.

Theorem: Let $T_1: U \rightarrow W$ and $T_2: V \rightarrow W$ be invertible linear transformations. Then T_1T_2 is invertible and $(T_2T_1)^{-1} = T_1^{-1}T_2^{-1}$.

Non-singular linear transformation:

Let U and V be vector spaces over the field F. Then a linear transformation $T: U \rightarrow V$ is called non-singular if T is 1-1 and onto. ($T^{-1}: V \rightarrow U$ exists)

Theorem: Let $T : U \rightarrow V$ be a non-singular linear map. Then $T^{-1} : V \rightarrow U$ is a linear 1-1 and onto.

Example: Let T: $V_3 \rightarrow V_3$ be a linear map defined by $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_2 + x_3, x_3)$. Show that T is non-singular and find T⁻¹.

```
Solution: We have, T is non-singular = T is 1-1 and onto.
                 First we show that T is 1-1,
 ...
                 Let (x_1, x_2, x_3) \in N(T) \implies T(x_1, x_2, x_3) = 0
                                                                 \Rightarrow ( x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub>, x<sub>2</sub> + x<sub>3</sub>, x<sub>3</sub>) = 0
 \therefore x_1 + x_2 + x_3 = 0, x_2 + x_3 = 0, x_3 = 0 \implies x_1 = 0 = x_2 = x_3.
      (0,0,0) \in N(T) \Longrightarrow N(T) = \{0\} \Longrightarrow T \text{ is } 1-1
 Now dimension of domain and dimension of co-domain are same i.e. t is onto.
 •
                 T is 1-1 and onto \Rightarrow T is non-singular.
 Next, to find T^{-1}.
                 Let T^{-1}(y_1, y_2, y_3) = x_1, x_2, x_3.
 \Rightarrow T(x_1, x_2, x_3) = (y_1, y_2, y_3) 
 \Rightarrow (x_1 + x_2 + x_3, x_2 + x_3, x_3) = (y_1, y_2, y_3) 
 \therefore x_1 + x_2 + x_3 = y_1, x_2 + x_3 = y_2, x_3 = y_3. \Rightarrow x_3 = y_3, x_2 = y_2 - y_3, x_1 = y_1 - y_2, 
          T^{-1}(y_1, y_2, y_3) = (y_1 - y_2, y_2 - y_3, y_3).
 ...
```

Co-ordinate vector:

Let V be a finitely dimensional vector space over a field F and let dimV = n, then B = { $v_1 + v_2 + v_3 + ... + v_n$ } is an ordered basis of V and for v \in V can be uniquely written as

 $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \dots + \alpha_n \mathbf{v}_n$

where the scalars α_1 , α_2 , α_3 , ..., α_n are fixed for v.

The vector $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n)$ is called the co-ordinate vector of **v** relative to the ordered basis B and denoted by $[v]_v$.

i.e.
$$[\mathbf{v}]_{\mathsf{B}} = (\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n) = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \vdots \\ \alpha_n \end{bmatrix}$$

Example: Let $B = \{ (1,1,1), (1,0,1), (0,0,1) \}$ be a for V_3 . Find the co-ordinate vector $(2,3,4) \in V_3$ relative to basis B.

Solution. Let B = { v₁, v₂, v₃ } be an ordered basis for V₃, and v₁, = (1,1,1), v₂ = (1,0,1), v₃ = (0,0,1), . Denote. v = (2,3,4) \in V₃ =L(B). v = $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \quad \alpha_i \in$ F (2,3,4) = $\alpha_1(1,1,1)$, + $\alpha_2(1,0,1)$, + $\alpha_3(0,0,1)$ = ($\alpha_1 + \alpha_2, \alpha_1, \alpha_1 + \alpha_2 + \alpha_3$) ($\alpha_1 + \alpha_2 = 2$, $\alpha_1 = 3$, $\alpha_1 + \alpha_2 + \alpha_3 = 4 \implies \alpha_1 = 3$, $\alpha_2 = -1$, $\alpha_3 = 2$ [v]_B = ($\alpha_1, \alpha_2, \alpha_3$) = (3, -1, 2) = co-ordinate vector of (2,3,4) relative to B. **Example:** Let $B = \{ (1,-1,3), (-3,4,2), (2,-2,4) \}$ be a for V_3 . Find the co-ordinate vector $(8,-9,6) \in V_3$ relative to basis B.

Matrix associated with a linear map:

Let U and V be vector spaces of dimension n and m respectively over the same field F. Consider $B_1 = \{ u_1 + u_2 + u_3 + ... + u_n \}$ and $B_2 = \{v_1 + v_2 + v_3 + ... + v_m\}$ are the ordered basis of vector spaces U and V respectively. Define a linear map T : U \rightarrow V. where T stands the vectors of B₁ to $Tu_1, Tu_2, Tu_3, \dots, Tu_n$ in V Then Tu_1 = linear combination of basis vectors B_2 of V $Tu_{1} = \alpha_{11}v_{1} + \alpha_{21}v_{2} + \alpha_{31}v_{3} + \dots + \alpha_{m1}v_{m}.$ $Tu_{2} = \alpha_{12}v_{1} + \alpha_{22}v_{2} + \alpha_{32}v_{3} + \dots + \alpha_{m2}v_{m}.$ $Tu_{1} = \alpha_{13}v_{1} + \alpha_{23}v_{2} + \alpha_{33}v_{3} + \dots + \alpha_{m3}v_{m}.$ $\mathsf{Tu}_{j} = \sum_{i=1}^{m} \alpha_{ij} v_{i} = \begin{bmatrix} \alpha_{1j} \\ \alpha_{2j} \\ \alpha_{3j} \\ \vdots \\ \vdots \end{bmatrix}$ $Tu_{n} = \alpha_{1n}v_{1} + \alpha_{2n}v_{2} + \alpha_{31}v_{3} + \dots + \alpha_{mn}v_{m}.$

is the co-ordinate vector with respect to the ordered basis B_2 .

Each $...\alpha_{ij} \in F$, then $M = \begin{bmatrix} \alpha_{11} & \alpha_{12} & & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & & \alpha_{2n} \\ & & \ddots & & \ddots \\ & & \ddots & & \ddots \\ \alpha_{m1} & \alpha_{m2} & & \alpha_{mn} \end{bmatrix}$ M= [matrix] is the matrix whose jth column is $\begin{bmatrix}
\alpha_{1j} \\
\alpha_{2j} \\
\alpha_{3j} \\
.
\end{bmatrix}$ $\alpha m j$

which is the coordinate vector relative to the basis B_2 .

This matrix M is called the matrix of T or the matrix associated with the linear map T with respect to bases B_1 and B_2 . It is denoted by (T: B_1 , B_2). \therefore (T: B_1 , B_2) = ...(α_{ij})_{mxn} = [matrix]

$$(T:B_1, B_2) = (\alpha_{ij})_{m \times n} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{bmatrix}$$