Mahatma Fule Arts, Commerce, and Sitaramji Chaudhari Science Mahavidyalaya, Warud

Department of Mathematics

Topic: Linear Transformation

Dr. R. S. Wadbude
Associate Professor

Let U and V be two vector spaces over the same field F.
A function $T: U \rightarrow V$ is said to be linear transformation from U to V if
i) $\mathbf{T}(\mathbf{u}+\mathbf{v})=\mathbf{T}(\mathbf{u})+\mathbf{T}(\mathbf{v})$
$\forall \mathbf{u}, \mathbf{v} \in \mathbf{U}$
ii) $\mathbf{T}(\alpha \mathbf{u})=\alpha \mathbf{T}(\mathbf{u})$
$\forall \mathbf{u} \in \mathbf{U}, \alpha \in \mathbf{F}$

In other words a function $T: U \rightarrow V$ is said to be linear transformation from U to V which associates to each element $u \in U$ to a unique element $T(u) \in V$ such that

$$
\mathbf{T}(\alpha \mathbf{u}+\beta \mathbf{v})=\alpha \mathbf{T}(\mathbf{u})+\beta \mathbf{T}(\mathbf{v}) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbf{U} \quad \text { and } \alpha, \beta \in \mathbf{F}
$$

Properties of linear Transformation

If $T: U \rightarrow V$ is a linear transformation from U to V, then
i) . $\mathrm{T}(0)=0^{\prime}$, where $0 \in \mathrm{U}$ and $0^{\prime} \in V$

We have $T(\alpha u)=\alpha T(u) \quad \forall u \in U, \alpha \in F$
Put $\alpha=0 \in F$, then $\mathrm{T}(0 u)=0 T(u)=0^{\prime}$
$\therefore \mathrm{T}(0)=\mathrm{O}^{\prime}$
ii) Again we have $\mathrm{T}(\alpha \mathrm{u})=\alpha \mathrm{T}(\mathrm{u}) \quad \forall u \in \mathrm{U}, \alpha \in \mathrm{F}$

$$
\text { put } \alpha=-1 \in F \text {, then } T(-1 . u)=-1 .=-T(u)
$$

$\therefore \mathrm{T}(-1 . \mathrm{u})=-\mathrm{T}(\mathrm{u})$
iii) $T\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}+\alpha_{3} u_{3}+\ldots+\alpha_{n} u_{n}\right)=T\left(\alpha_{1} u_{1}\right)+T\left(\alpha_{2} u_{2}+\alpha_{3} u_{3}+\ldots+\alpha_{n} u_{n}\right)$

$$
=\alpha_{1} T\left(u_{1}\right)+T\left(\alpha_{2} u_{2}\right)+T\left(\alpha_{3} u_{3}+\ldots+\alpha_{n} u_{n}\right)
$$

$$
=\alpha_{1} T\left(u_{1}\right)+\alpha_{2} T\left(u_{2}\right)+T\left(\alpha_{3} u_{3}+\ldots+\alpha_{n} u_{n}\right)
$$

$$
=T\left(\alpha_{1} u_{1}\right)+T\left(\alpha_{2} u_{2}\right)+T\left(\alpha_{3} u_{3}\right)+\ldots+T\left(\alpha_{n} u_{n}\right)
$$

iv) $T(u-v)=T(u)-T(v)$
$\forall \mathbf{u}, \mathbf{v} \in \mathbf{U}$,
Now $T(u-v)=T\{u+(-v)\}$
$=T(u)+T(-v)=T(u)-T(v)$
$(T(-v)=-T(v))$
$\therefore \mathrm{T}(\mathrm{u}-\mathrm{v})=\mathrm{T}(\mathrm{u})-\mathrm{T}(\mathrm{v})$

Example : The function $T: R^{2} \rightarrow R^{2}$, defined by $(x, y)=(x+1, y+3)$ is not a Linear Transformation.

Solution: Consider $(x, y)=(1,1)$ and show that $T(\alpha(1,1)=\alpha T(1,1)$. Let $T: R^{2} \rightarrow R^{2}$ be defined by $(x, y)=(x+1, y+3) \quad \forall(x, y) \in R^{2}$ $\Rightarrow \mathrm{T}(1,1)=(2,4)$

Now $\mathrm{T}(3(1,1)=\mathrm{T}(3,3)$ and $3 \mathrm{~T}(1,1)=3(2,4)=(6,12)$
Thus $\mathrm{T}(3(1,1) \neq 3 \mathrm{~T}(1,1)$, hence T is not linear transformation.

Example: (NET) which of the following is L.T. from R^{3} to R^{2}.

Kernel of L.T.:

Let $T: U \rightarrow V$ be a linear transformation from U to V.
Null space or kernel of T and is defined as

$$
\text { Ker }=\{u \in U \mid T(u)=\mathbf{0}=\text { zero vector of } V\} \quad[\text { if } T(\mathbf{0})=\mathbf{0} \Rightarrow \mathbf{0} \in \operatorname{KerT} \subset U]
$$

Range of L.T. :

Let $T: U \rightarrow V$ be a linear transformation from U to V.
Range of T is denoted by $R(T)$ and defined as

$$
R(T)=\{T(u) \mid u \in U\} \quad[R(T)=T(U)]
$$

Nullity of T:

The dimension of null space is called nullity of T .
Denoted by $\mathrm{n}(\mathrm{T})$ or $\operatorname{dimN}(\mathrm{T})$.

Rank of T :

The dimension of $R(T)$ is called rank of T.
Denoted by $r(T)$ or $\operatorname{Dim}(R(T)$.

Theorem. Let $T: U \rightarrow V$ be a linear transformation from U to V. Then
(a) $R(T)$ is a subspace of.
(b) $N(T)$ is a subspace of .
(c) T is $1-1 \Leftrightarrow N(T)$ is a zero subspace of U
(d) $\mathrm{T}\left[\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3}+\ldots+\mathrm{u}_{\mathrm{n}}\right]=\mathrm{R}(\mathrm{T})=\left[\mathrm{Tu}_{1}+T \mathrm{u}_{2}+\mathrm{T} \mathrm{u}_{3}+\ldots+\mathrm{T} \mathrm{u}_{\mathrm{n}}\right]$
(e) U is a finite dimensional vector space $\Rightarrow \operatorname{dim} R(T) \leq \operatorname{dim} U$.

Theorem. Let $T: U \rightarrow V$ be a linear transformation from U to V. Then
a) If T is 1-1 and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are LI vectors in U, then $T u_{1}, T u_{2}, T u_{3}, \ldots, T u_{n}$ are LI vectora in V.
b) If $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ are LI in $R(T)$ and $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are vectors in U such that $T u_{i}=v_{i}$ for $i=1,2,3 \ldots n$. Then $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ is LI.

Theorem. Let $T: U \rightarrow V$ be a linear map and U be finitely dimensional vector space. Then $\quad \operatorname{dim} R(T)+\operatorname{dimN}(T)=\operatorname{dim}(U)$ i.e, Rank + Nullity $=$ dim. of domain.

Theorem. If U and V are same finitely dimensional vector spaces over the same field, then a linear map $T: U \rightarrow V$ is $1-1 \Leftrightarrow T$ is onto.
Corollary: Let $T: U \rightarrow V$ be a linear map and $\operatorname{dimU}=\operatorname{dimV}=$ a finite positive integer. Then following statements are equivalent:
a) T is onto
b) $R(T)=V$
c) $\operatorname{dim} R(T)=\operatorname{dim} V$
d) $\operatorname{dim} \mathrm{N}(\mathrm{TO}=0$
e) $\mathrm{N}(\mathrm{TO}=0$
f) T is $1-1$.

Algebra of Linear Transformations

A: Let U and V be two vector spaces over the field F.
Let T_{1} and T_{2} be two linear transformations from U to V.
i) Then the function $\left(T_{1}+T_{2}\right)$ defined by

$$
\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)(\mathrm{u})=\mathrm{T}_{1}(\mathrm{u})+\mathrm{T}_{2}(\mathrm{u}) \quad \forall \mathrm{u} \in \mathrm{U}
$$

is a linear transformations from U to V .
ii) If $\alpha \in \mathrm{F}$ is any element, then the function ($\alpha \mathrm{T}$) defined by

$$
(\alpha T) u=\alpha T(u) \quad \forall u \in U
$$

is a linear transformations from U to V .
[The set of all linear transformations $L(U, V)$ from U to V, together with vector addition and scalar multiplication defined above, is a vector space over the field F .]

B: Let U be an m -dimensional and V be an n - dimensional vector spaces over the same field F .

Then the vector space $L(U, V)$ if finite- dimensional and has dimension $m n$.

C: Let U, V and W be vector spaces over the field F . Let $\mathrm{T}_{1}: \mathrm{U} \rightarrow \mathrm{V}$ and $T_{2}: V \rightarrow W$, then the composition function $T_{2} \cdot T_{1}$ is defined by

$$
\mathrm{T}_{2} \cdot \mathrm{~T}_{1}(\mathrm{u})=\mathrm{T}_{2}\left[\mathrm{~T}_{1}(\mathrm{u})\right] \quad \forall \mathrm{u} \in \mathrm{U}
$$

is a linear transformations from U to W .

Linear operator: If V is a vector space over the field F , the a linear transformation from V into V is called a linear operator.

Example: Let T_{1} and T_{2} be two linear transformations from $R^{2}(R)$ into $R^{2}(R)$ defined by $T_{1}(x, y)=(x+y, 0)$ and $T_{2}(x, y)=(0, x-y)$, then $T_{2} T_{1} \neq T_{1} T_{2}$.
Solution: $T_{1} T_{2}(x, y)=T_{1}\left(T_{2}(x, y)\right)=T_{1}(0, x-y)=(x-y, 0)$

$$
T_{2} T_{1}(x, y)=T_{2}\left(T_{1}(x, y)\right)=T_{2}(x+y, 0)=(0, x+y)
$$

$\therefore \quad \mathrm{T}_{2} \mathrm{~T}_{1} \neq \mathrm{T}_{1} \mathrm{~T}_{2}$.
If T is a linear operator on V, then we can compose T with T as follows

$$
\begin{aligned}
& \mathrm{T}^{2}=\mathrm{TT} \\
& \mathrm{~T}^{3}=\mathrm{TTT}
\end{aligned}
$$

$$
\left.\mathrm{T}^{\mathrm{n}}=\mathrm{TTT} . . . \mathrm{T} \text { (} \mathrm{n} \text { times }\right)
$$

Remark: If $\mathrm{T} \neq \mathbf{0}$, then we define $\mathrm{T}^{\mathbf{0}}=\mathrm{I}$ (identity operator)

Theorem: Let V be a vector space over field F, le T, T_{1}, T_{2}, and T_{3} be linear operators on V and let α be an element in F, then
i) $I T=T I=T$. $\quad I$ being an identity operator.
ii) $T_{1}\left(T_{2}+T_{3}\right)=T_{1} T_{2}+T_{1} T_{3}$, and $\left(T_{2}+T_{3}\right) T_{1}=T_{2} T_{1}+T_{3} T_{1}$.
iii) $T_{1}\left(T_{2} T_{3}\right)=\left(T_{1} T_{2}\right) T_{3}$.
iv) $\alpha\left(T_{1} T_{2}\right)=\left(\alpha T_{1}\right) T_{2}=T_{1}\left(\alpha T_{2}\right)$.
v) $\mathrm{TO}=\mathbf{O T}=\mathbf{0}, \mathbf{0}$ being a zero linear operator.

Invertible linear transformation:

A linear transformation $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is called invertible or regular if there exists a unique linear transformation $\mathrm{T}^{-1}: \mathrm{V} \rightarrow \mathrm{U}$ such that $\mathrm{T}^{-1} \mathrm{~T}=\mathrm{I}$ is identity transformation on U and TT^{-1} is the identity transformation on V .
\mathbf{T} is invertible \Leftrightarrow i) T is 1-1 \quad ii) T is onto i.e $\operatorname{dim} R(T)=V$

Theorem: Let U and V be vector spaces over the same field F . and let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear transformation, If T is invertible, then T^{-1} is a linear transformation from V into U .

Theorem: Let $\mathrm{T}_{1}: \mathrm{U} \rightarrow \mathrm{W}$ and $\mathrm{T}_{2}: \mathrm{V} \rightarrow \mathrm{W}$ be invertible linear transformations. Then $T_{1} T_{2}$ is invertible and $\left(T_{2} T_{1}\right)^{-1}=T_{1}{ }^{-1} T_{2}{ }^{-1}$.

Non-singular linear transformation:
Let U and V be vector spaces over the field F . Then a linear transformation $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ is called non-singular if T is $1-1$ and onto. ($\mathrm{T}^{-1}: \mathrm{V} \rightarrow \mathrm{U}$ exists)

Theorem: Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a non-singular linear map. Then $\mathrm{T}^{-1}: \mathrm{V} \rightarrow \mathrm{U}$ is a linear 1-1 and onto.

Example: Let T : $V_{3} \rightarrow V_{3}$ be a linear map defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, x_{3}\right)$. Show that T is non-singular and find T^{-1}.

Solution: We have, T is non-singular $=\mathrm{T}$ is 1-1 and onto. First we show that T is 1-1,

$$
\begin{aligned}
& \text { Let }\left(x_{1}, x_{2}, x_{3}\right) \in N(T) \Rightarrow T\left(x_{1}, x_{2}, x_{3}\right)=0 \\
& \Rightarrow\left(x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, x_{3}\right)=0 \\
& x_{1}+x_{2}+x_{3}=0, \quad x_{2}+x_{3}=0, \quad x_{3}=0 \Rightarrow x_{1}=0=x_{2}=x_{3} . \\
&(0,0,0) \in N(T) \Rightarrow N(T)=\{0\} \Rightarrow T \text { is } 1-1
\end{aligned}
$$

Now dimension of domain and dimension of co-domain are same i.e. t is onto.
$\therefore \quad \mathrm{T}$ is $1-1$ and onto $\Rightarrow \mathrm{T}$ is non-singular.
Next, to find T^{-1},

$$
\text { Let } \mathrm{T}^{-1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)=\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \text {. }
$$

$\Rightarrow \quad \mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)$
$\Rightarrow \quad\left(x_{1}+x_{2}+x_{3}, x_{2}+x_{3}, x_{3}\right)=\left(y_{1}, y_{2}, y_{3}\right)$
$\therefore \quad \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=\mathrm{y}_{1}, \quad \mathrm{x}_{2}+\mathrm{x}_{3}=\mathrm{y}_{2}, \quad \mathrm{x}_{3}=\mathrm{y}_{3} . \Rightarrow \quad \mathrm{x}_{3}=\mathrm{y}_{3}, \quad \mathrm{x}_{2}=\mathrm{y}_{2}-\mathrm{y}_{3} \quad \mathrm{x}_{1}=\mathrm{y}_{1}-\mathrm{y}_{2}$,
$\therefore \quad \mathbf{T}^{-1}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathrm{y}_{3}\right)=\left(\mathbf{y}_{1}-\mathrm{y}_{2}, \mathrm{y}_{2}-\mathrm{y}_{3}, \mathrm{y}_{3}\right)$.

Co-ordinate vector:

Let V be a finitely dimensional vector space over a field F and let $\operatorname{dim} V=n$, then $B=\left\{v_{1}+v_{2}+v_{3}+\ldots+v_{n}\right\}$ is an ordered basis of V and for $v \in \mathrm{~V}$ can be uniquely written as
$v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}+\ldots+\alpha_{n} v_{n}$
where the scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$ are fixed for v.
The vector ($\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}$) is called the co-ordinate vector of \mathbf{v} relative to the ordered basis B and denoted by $[\mathrm{v}]_{\mathrm{v}}$.
i.e. $\quad[\mathrm{v}]_{\mathrm{B}}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{\mathrm{n}}\right)=\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ \vdots \\ \alpha_{n}\end{array}\right]$

Example: Let $B=\{(1,1,1),(1,0,1),(0,0,1)\}$ be a for V_{3}. Find the co-ordinate vector $(2,3,4) \in V_{3}$. relative to basis B.

Solution. Let $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ be an ordered basis for V_{3}, and $v_{1},=(1,1,1), v_{2}=(1,0,1)$,

$$
\begin{gathered}
\mathrm{v}_{3}=(0,0,1), . \text { Denote. } \mathrm{v}=(2,3,4) \in \mathrm{V}_{3}=\mathrm{L}(\mathrm{~B}) . \\
\mathrm{v}=\alpha_{1} v_{1}+\alpha_{2} \mathrm{v}_{2}+\alpha_{3} \mathrm{v}_{3} \quad \alpha_{i} \in \mathrm{~F} \\
(2,3,4)=\alpha_{1}(1,1,1),+\alpha_{2}(1,0,1),+\alpha_{3}(0,0,1)=\left(\alpha_{1}+\alpha_{2}, \alpha_{1}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right) \\
\left(\alpha_{1}+\alpha_{2}=2, \alpha_{1}=3, \alpha_{1}+\alpha_{2}+\alpha_{3}=4 \Rightarrow \alpha_{1}=3, \alpha_{2}=-1, \alpha_{3}=2\right. \\
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(3,-1,2)=\text { co-ordinate vector of }(2,3,4) \text { relative to } B .
\end{gathered}
$$

Example: Let $B=\{(1,-1,3),(-3,4,2),(2,-2,4)\}$ be a for V_{3}. Find the co-ordinate vector $(8,-9,6) \in V_{3}$ relative to basis B.

Matrix associated with a linear map:

Let U and V be vector spaces of dimension n and m respectively over the same field F.
Consider $\mathrm{B}_{1}=\left\{\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3}+\ldots+\mathrm{u}_{n}\right\}$

$$
\text { and } B_{2}=\left\{v_{1}+v_{2}+v_{3}+\ldots+v_{m}\right\}
$$

are the ordered basis of vector spaces U and V respectively.
Define a linear map $T: U \rightarrow V$. where T stands the vectors of B_{1} to
$T u_{1}, T u_{2}, T u_{3}, \ldots, T u_{n}$ in V
Then $\quad T u_{1}=$ linear combination of basis vectors B_{2} of V

$$
\begin{aligned}
& \mathrm{Tu} u_{1}=\alpha_{11} v_{1}+\alpha_{21} v_{2}+\alpha_{31} v_{3}+\ldots+\alpha_{m 1} v_{m} . \\
& \mathrm{Tu}_{2}=\alpha_{12} v_{1}+\alpha_{22} v_{2}+\alpha_{32} v_{3}+\ldots+\alpha_{m 2} v_{m} . \\
& \mathrm{Tu}_{1}=\alpha_{13} v_{1}+\alpha_{23} v_{2}+\alpha_{33} v_{3}+\ldots+\alpha_{m 3} v_{m} . \\
& \ldots \ldots . . \quad \ldots . . \\
& \mathrm{Tu}_{\mathrm{n}}=\alpha_{1 n} v_{1}+\alpha_{2 n} v_{2}+\alpha_{31} v_{3}+\ldots+\alpha_{m n} v_{m} .
\end{aligned}
$$

$$
\mathrm{Tu}_{\mathrm{j}}=\sum_{i=1}^{m} \alpha_{i j} v_{i}=\left[\begin{array}{l}
\alpha_{1 j} \\
\alpha_{2 j} \\
\alpha_{3 j} \\
\cdot \\
\cdot \\
\alpha m j
\end{array}\right]
$$

is the co-ordinate vector with respect to the ordered basis B_{2}.

Each $\ldots \alpha_{i j} \in F$, then

$\mathrm{M}=[$ matrix $]$ is the matrix whose jth column is $\left[\begin{array}{l}\alpha_{1 j} \\ \alpha_{2 j} \\ \alpha_{3 j} \\ - \\ \vdots \\ \alpha m j\end{array}\right]$
which is the coordinate vector relative to the basis B_{2}.

This matrix M is called the matrix of T or the matrix associated with the linear map T with respect to bases B_{1} and B_{2}. It is denoted by (T : B_{1}, B_{2}).
$\therefore\left(\mathrm{T}: \mathrm{B}_{1}, \mathrm{~B}_{2}\right)=\ldots\left(\alpha_{\mathrm{ij}}\right)_{\mathrm{mxn}}=$ [matrix]

$$
\left(T: B_{1}, B_{2}\right)=\left(\alpha_{i j}\right)_{m \times n}=\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \cdot & \alpha_{1 n} \\
\alpha_{21} & \alpha_{22} & \cdot & \alpha_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\alpha_{m 1} & \alpha_{m 2} & \cdot & \alpha_{m n}
\end{array}\right]
$$

