
Topic: Linear Transformation 
 

Dr. R. S. Wadbude  
Associate Professor 

Department of Mathematics  
 



Let U and V be two vector spaces over the same field F.  

A function T : U  V is said to be linear transformation from U to V if 

  i) T(u +v) = T(u) + T(v)     u, v  U 

 ii) T(u) = T(u)     u  U,    F 

In other words a function T : U  V is said to be linear transformation from U to V  

which associates to each element u  U to a unique element T(u)  V such that  

 T(u +v) = T(u) + T(v)     u, v U   and ,   F   

 



 If  T : U  V  is a linear transformation from U to V, then 
i) . T(0) = 0 , where 0  U and 0  V 
      We have   T(u) = T(u)    u  U,    F 
    Put  = 0F, then  T(0u) = 0T(u) = 0 
     T(0) = 0 
ii) Again we have  T(u) = T(u)    u  U,    F 
      put  = -1  F, then   T(-1.u) = -1. = - T(u)  
     T(-1.u) = - T(u) 
 
iii) T(1u1 + 2u2 +3u3 +…+ nun) = T(1u1) +T( 2u2 +3u3 +…+ nun) 
          =    1T(u1) +T( 2u2 )+T(3u3 +…+ nun) 
          =   1T(u1) + 2T(u2 )+T(3u3 +…+ nun) 
    ………. 
          =  T(1u1) + T(2u2) +T(3u3 )+…+ T(nun) 
 
iv) T(u – v) = T(u) – T(v)                                     u, v  U,   
        Now   T(u – v) = T{u + ( - v)} 
                    = T(u) + T(-v)  = T(u) – T(v)     (  T(-v) = -T(v)) 
               T(u – v) = T(u) – T(v)   
  

Properties of linear Transformation 



Example : The function T: R2  R2, defined by ( x, y) = (x + 1, y + 3) is not 

                  a Linear Transformation.   

Solution: Consider (x, y) = (1, 1) and show that  T((1, 1) = T(1, 1). 

  Let T: R2  R2  be defined by ( x, y) = (x + 1, y + 3)      ( x, y)  R2 

   T(1, 1) = (2, 4)  

 Now  T(3(1, 1) = T(3, 3) and  3T(1, 1) = 3(2, 4) = (6, 12)  

 Thus T(3(1, 1)  3T(1, 1), hence T is not linear transformation.  

  

Example: (NET) which of the following is L.T. from R3 to R2…… 

  
 



Kernel of L.T.:   

 Let  T : U  V  be a linear transformation from U to V. 

 Null space or kernel of T and is defined as 

 Ker = { u UT(u) = 0 = zero vector of V}              [if  T(0) = 0  0  KerT  U] 

Range of L.T. :  

 Let  T : U  V  be a linear transformation from U to V. 

 Range of T is denoted by R(T) and defined as 

 R(T) = { T(u) u  U}                              [ R(T) = T(U)] 



 Theorem . Let  T : U  V  be a linear transformation from U to V. Then  

 (a) R(T) is a subspace of .  

 (b) N(T) is a subspace of . 

 (c ) T is 1-1 N(T) is a zero subspace of U 

                  (d) T[u1 + u2 +u3 +…+ un] = R(T) = [Tu1 +Tu2 + Tu3 +…+ Tun] 

 (e) U is a finite dimensional vector space  dimR(T)  dimU. 

 

Nullity of T:   
 The dimension of null space is called nullity of T.  
Denoted by n(T) or dimN(T). 
 

Rank of T :  
 The dimension of R(T) is called rank of T.  
Denoted by r(T) or Dim(R(T). 
 



Theorem . Let  T : U  V  be a linear transformation from U to V. Then  
a) If T is 1-1 and u1 , u2 , u3 ,… , un are LI vectors in U,  
       then Tu1 ,Tu2 , Tu3 ,…,Tun are LI vectora in V. 

         b)   If v1 , v2 , v3 ,… , vn are LI in R(T) and u1 , u2 , u3 ,… , un are vectors in U such that  
      Tui = vi for i = 1,2,3…n. Then {u1 , u2 , u3 ,… , un} is LI.  
 
Theorem . Let  T : U  V  be a linear map and U be finitely dimensional vector space.  
                    Then   dimR(T) + dimN(T) = dim (U)             
    i.e,      Rank + Nullity = dim. of domain. 
 
Theorem. If U and V are same finitely dimensional vector spaces over the same field,  
                   then a linear map T: U  V is 1-1  T is onto. 
Corollary:  Let  T : U  V  be a linear map and dimU = dimV = a finite positive integer.  
 Then following statements are equivalent:  
        a) T is onto                       b) R(T) = V             c) dimR(T) =  dimV   
       d) dim N(T0 =0                         e) N(T0 =0             f)  T is 1-1.                      
 



Algebra of Linear Transformations 

A:      Let U and V be two vector spaces over the field F. 

  Let T1 and T2 be two linear transformations from U to V.  

 i) Then the function (T1 + T2) defined by  

       (T1 + T2)(u) = T1(u)  + T2(u)        u  U 

        is a linear transformations from U to V.  

 ii) If   F is any element, then the function (T) defined by  

  (T)u = T(u)   u  U 

      is a linear transformations from U to V.  

[ The set of all linear transformations L(U, V) from U to V, together with   

vector addition and scalar multiplication defined above, is a vector space over 

 the field F.] 

 



 

B:  Let U be an m-dimensional and V be an n- dimensional vector spaces 

     over the same field F. 

   Then the vector space L(U, V) if finite- dimensional and has dimension mn. 

 

C: Let U, V and W be vector spaces over the field F. Let T1 : U  V  

     and T2 : V  W, then the composition function T2.T1 is defined by  

  T2.T1(u) = T2[T1(u)]           u  U 

     is a linear transformations from U to W.  

 



Example:  Let T1 and T2 be two linear transformations from R2 (R) into R2 (R)  
                  defined by  T1(x, y) = ( x + y, 0) and T2(x, y) = (0, x – y), then  T2T1  T1T2 .  
Solution:  T1T2(x, y) = T1(T2(x, y)) = T1(0, x – y) = ( x - y, 0) 
                   T2T1(x, y) = T2(T1(x, y)) = T2(x + y, 0) = (0, x + y), 
    T2T1  T1T2 . 
          If T is a linear operator on V, then we can compose T with T as follows  
 T2 = TT 
 T3 = TTT 
 ……….. 
 Tn = TTT….T ( n times)  
Remark:  If T  0, then we define T0 = I ( identity operator)  
 
Theorem: Let V be a vector space over field F, le T, T1, T2, and T3 be linear operators  
                  on V and let  be an element in F, then  
  i) IT = TI = T.     I being an identity operator. 
 ii)  T1(T2 + T3) = T1T2 + T1T3,   and   (T2 + T3) T1 = T2T1 + T3T1 . 
 iii) T1(T2  T3) = (T1T2)T3 . 
 iv) ( T1T2) = (T1)T2 = T1 (T2). 
 v) T0 = 0T = 0,   0 being a zero linear operator. 

Linear operator : If V is a vector space over the field F, the a linear transformation 
                              from V into V is called a linear operator. 
 



 
Theorem: Let U and V be vector spaces over the same field F. and let T : U  V 
 be a linear transformation, If T is invertible,  
then T-1 is a linear transformation  from V into U. 
 
Theorem: Let T1: U  W and T2: V  W be invertible linear transformations.  
Then  T1T2 is invertible and  (T2T1 )-1 = T1 

-1T2 
-1.  

  
Non-singular linear transformation:  
 Let U and V be vector spaces over the field F. Then a linear transformation   
T : U  V is called non-singular if T is 1-1 and onto. (T-1 : V U exists)   
 

Invertible linear transformation:  
A linear transformation T : U  V is called invertible or regular if there exists a unique  
linear transformation T-1 : V  U such that T-1 T = I is identity transformation on U 
 and TT-1 is the identity transformation on V. 
T is invertible        i) T is 1-1      ii) T is onto  i.e  dimR(T) = V 
 



Theorem: Let T : U  V be a non-singular linear map. Then T-1 : V U is a linear  
                   1-1 and onto.  
 
Example: Let T: V3 V3 be a linear map defined by  
T(x1, x2 , x3 ) = ( x1 + x2 +x3, x2+x3, x3 ) . Show that T is non-singular and find T-1.  
 
  Solution: We have, T is non-singular  =  T is 1-1 and onto. 
   First we show that T is 1-1, 
  Let (x1, x2 , x3 )  N(T)   T(x1, x2 , x3 ) = 0 
     ( x1 + x2 +x3, x2+x3, x3 ) = 0 
  x1 + x2 +x3 = 0,   x2+x3 = 0,    x3  = 0      x1 =0 =  x2 = x3. 
   (0,0,0 )  N(T)  N(T) = {0}  T is 1-1 
Now dimension of domain and dimension of co-domain are same i.e. t is onto.  
  T is 1-1 and onto  T is non-singular.  
Next, to find T-1,  
 Let T-1(y1, y2, y3) = x1, x2 , x3. 
  T(x1, x2 , x3) = (y1, y2, y3)  
  ( x1 + x2 +x3, x2+x3, x3 ) = (y1, y2, y3)  
   x1 + x2 +x3 = y1,   x2+x3 = y2,    x3  = y3.      x3  = y3,     x2 =  y2 - y3   x1 = y1- y2,   
   T-1(y1, y2, y3) = (y1- y2, y2 - y3, y3 ). 
 



Co-ordinate vector:  
         Let V be a finitely dimensional vector space over a field F and  
 let dimV  = n , then B = { v1 + v2 +v3 +…+ vn} is an ordered basis of V and 
  for v V can be uniquely written as 
 v = 1v1 + 2v2 +3v3 +…+ nvn        
 where the scalars 1,  2 ,3 ,…,n are fixed for v. 
        The vector (1, 2, 3,…,n) is called the co-ordinate vector of v relative  
to the ordered basis B and denoted by [v]v. 
 
  
i.e.    [v]B = (1,2 ,3 ,…,n) =  
 
 
 
Example: Let  B = { (1,1,1), (1,0,1), (0,0,1)} be a for V3. Find the co-ordinate vector 
  (2,3,4) V3.relative to basis B.  
 
Solution. Let  B = { v1 , v2 ,v3 } be an ordered basis for V3, and v1 , = (1,1,1), v2 = (1,0,1),   
                     v3 = (0,0,1), . Denote. v = (2,3,4) V3 =L(B). 
                    v =  1v1 + 2v2 +3v3     i F    
                   (2,3,4)  =  1(1,1,1),  + 2(1,0,1),   +3(0,0,1) = (1+2, 1, 1 + 2 +3)    
  (1+2= 2,  1= 3, 1 + 2 +3= 4   1= 3, 2= -1, 3 = 2 
       [v]B = (1, 2 ,3) = (3, -1, 2) = co-ordinate vector of ( 2,3,4) relative to B. 
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Matrix associated with a linear map:   
Let U and V be vector spaces of dimension n and m respectively over the same field F. 
Consider B1 =  { u1 + u2 +u3 +…+ un}  
         and B2 =  { v1 + v2 +v3 +…+ vm}   
are the ordered basis of vector spaces U and V respectively. 
 Define a linear map T : U  V. where T stands the vectors of B1 to 
  Tu1,Tu2 , Tu3 ,…, Tun in V  
Then      Tu1 = linear combination of basis vectors B2 of V 
 Tu1 = 11v1 + 21v2 +31v3 +…+ m1vm. 
 Tu2 = 12v1 + 22v2 +32v3 +…+ m2vm. 
 Tu1 = 13v1 + 23v2 +33v3 +…+ m3vm. 
 ……       ……. 
 Tun = 1nv1 + 2nv2 +31v3 +…+ mnvm. 
  
     Tuj =      
 
is the co-ordinate vector with respect to the ordered basis B2. 
 

Example: Let  B = { (1,-1,3), (-3,4,2), (2,-2,4)} be a for V3. Find the co-ordinate vector 
  (8,-9,6) V3.relative to basis B.  
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Each …ij  F, then 
 
 
 
 
 
 
 
 
 
  
  M= [   matrix]  is the matrix whose jth column is  
 
 
 
 
 which is the coordinate vector relative to the basis B2. 
 

























mnmm

n

n

M







.

....

....

.

.

21

22221

11211



























mj

j

j

j









.

.

3

2

1



This matrix M is called the matrix of T or the matrix associated with the linear map T 
 with respect to bases B1 and B2.It is denoted by (T: B1, B2).   
 (T: B1, B2) =   …(ij)mxn =  [matrix]  
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